Structure and morphology of thin MgO films on Mo(001)

نویسندگان

  • S. Benedetti
  • P. Torelli
  • S. Valeri
  • H. M. Benia
  • N. Nilius
چکیده

We report on the structural evolution versus thickness of MgO thin films grown epitaxially on Mo(001) and on the correlation between structure and surface morphology. The misfit strain induced by the mismatch with the substrate is relieved between 1 and 7 ML MgO due to the formation of an ordered network of interfacial misfit dislocations aligned along the MgO <110> directions, particularly evident after annealing the film at 1070 K. A dislocation periodicity of about 60 Å has been determined by means of Grazing Incidence X-ray Diffraction (GIXD). The dislocations induce a tilting of the surface that appears in electron diffraction along the <100> MgO directions for thin films and changes to <110> directions when the oxide thickness increases. Scanning Tunnelling Microscopy (STM) shows the presence of a regular pattern on the surface below 7 ML thickness associated to the dislocation network. With increasing thickness screw dislocations with non-polar steps appear on the oxide surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphology and optical properties of MgO thin films on Mo(001)

Thin MgO films with a nominal thickness ranging between 1 to 60 ML have been grown on a Mo(001) surface. The film morphology was studied by LEED and STM, revealing the presence of a coincidence pattern with the Mo support in the low coverage regime, a dislocation network at medium thickness and a rather flat and defect-poor MgO surface for thicker layers. The MgO optical properties were investi...

متن کامل

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

متن کامل

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

متن کامل

Thermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates

Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...

متن کامل

EPITAXIAL GROWTH OF Pt ( 001 ) THIN FILMS ONMgO ( 001 ) UNDER OXIDIZING CONDITIONS

Epitaxial Pt(001) thin films have been grown on MgO(001) substrates using dc magnetron sputtering with an Ar/0 2 mixture at 700'C. The width (FWHM) of the rocking curve of the Pt(002) peak is between 0.160 and 0.200, which is only 0.05' wider than that of the MgO (002) peak of the cleaved substrate. The film surface roughness is about 1 nm (rms) for a 240 nm thick Pt film. No grain structure co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008